Dogecoin - An open-source peer-to-peer digital currency (访问: hash.cyou 领取999USDT)
细胞是人体和其他生物体的基本结构单位。体内所有的生理功能和生化反应,都是在细胞及其产物(如细胞间隙中的胶原蛋白和蛋白聚糖)的物质基础上进行的。一百多年前,光学显微镜的发明促成了细胞的发现。此后对细胞结构和功能的研究,经历了细胞水平、亚细胞水平和分子水平等具有时代特征的研究层次,从细胞这个小小的单位里揭示出众多生命现象的机制,积累了极其丰富的科学资料。可以认为,离开了对细胞及构成细胞的各种细胞器的分子组成和功能的认识,要阐明物种进化、生物遗传、个体的新陈代谢和各种生命活动以及生长、发育、衰老等生物学现象。要阐明整个人体和各系统、器官的功能活动的机制,将是不可能的。事实上,细胞生理学和分子生物学的实验技术和理论,已经迅速地向基础医学和临床医学各部门渗透。因此,学习生理学应由细胞生理开始。
一切动物细胞都被一层薄膜所包被,称为细胞膜或质膜(plasmamembrane),它把细胞内容物细胞周围环境(主要是细胞外液)分隔开来,使细胞能相对地独立于环境而存在。很明显,细胞要维持正常的生命活动,不仅细胞的内容物不能流失,而且其化学组成必须保持相对稳定,这就需要在细胞和它所和的环境之间有起屏障作用的结构;但细胞在不断进行新陈代谢的过程中,又需要经常由外界得到氧气和营养物质。排出细胞的代谢产物,而这些物质的进入和排出,都必须经过细胞膜,这就涉及到物质的跨膜转运过程。因此,细胞膜必然是一个具有特殊结构和功能的半透性膜,它允许某些物质或离子有选择的通过,但又能严格地限制其他一些物质的进出,保持了细胞内物质成分的稳定。细胞内部也存在着类似细胞膜的膜性结构。组成各种细胞器如线粒体、内质网等的膜性部分,使它们与一般胞浆之间既存在某种屏障,也进行着某些物质转运。
各种物质分子在膜中的排列形式和存在,是决定膜的基本生物学特性的关键因素。分子生物学的研究成果表明,各种物质特别是生物大分子在各种生物结构中的特殊有序排列,是各种生命现象得以实现的基础。尽管目前还没有一种能够直接观察膜的分子结构的较方便的技术和方法,但根据对生物膜以及一些人工模拟膜特性的分析研究,从30年代以来就提出了各种有关膜的分子结构的假说,其中得到较多实验事实支持而目前仍为大多数人所接受的则70年代初期(Singer和Nicholson,1972)提出的液态镶嵌模型(fluid mosaic model)。这一假想模型的基本内容是:膜的共同结构特点是以液态的脂质双分子层为基架,其中镶嵌着具有不同分子结构、因而也具有不同生理功能的蛋白质,后者主要以а-螺旋或球形蛋白质的形式存在(图2-1)
最初提示膜中脂质呈双分子层形式存在的,是对红细胞膜所作的化学测定和计算。Gortert和Grendel(1925)提取出红细胞膜中所含的脂质,并测定将这些脂质以单分子层在水溶液表面平铺时所占的面积,结果发现一个红细胞膜中脂质所占的面积,差不多是该细胞表面积的2倍。因此导致以下结论:脂质可能是以双分子层的形式包被在细胞表面的。以后提出的双分子层模型中,每个磷脂分子中由磷酸和碱基构成的基团,都朝向膜的外表面或内表面,而磷脂分子中两条较长的脂酸烃链则在膜的内部两两相对(图2-1)。脂质分子的这种定向而整齐的排列,是由脂质分子本身的理化特性和热力学定律所决定。所有的膜脂质都是一些双嗜性分子,磷脂的一端的磷酸和碱基是亲水性极性基团,另一端的长烃链则属疏水性非极性基团。当脂质分子位于水表面时,由于水分子是极性分子,脂质的亲水性基团将和表面水分子相吸引,疏水性基团则受到排斥,于是脂质会在水表面形成一层亲水性基团朝向水面而疏水性基团朝向空气的整齐排列的单分子层。从热力学业角度分析,这样组成的系统包含的自由能最低,因而最为稳定,可以自动形成和维持。根据同样的原理,如果让脂质分子在水溶液中受到激烈扰动时,脂质有可能形成含水的小囊,但这囊只能是由脂质双分子层形成,外层脂质的极性基团和囊外水分子相吸引,内层脂质的极性基团则和囊内水分子相吸引,而两层脂质的疏水性烃链将两两相对,排斥水分子在囊膜中的存在,其结构正和天然生物膜一致。这种人工形成的人工膜囊,称为脂质小体(liposome),似人造细胞空壳,有很大的理论研究和实用价值。由此可见,脂质分子在细胞膜中以双分子层的形式存在,是由脂质分子本身的理化特性所决定的。设想进化过程中最初有生物学功能的膜在原始的海洋中出现时(也可能包括新的膜性结构在细胞内部的水溶液中的生成),这些基本的理化原理也在起作用。
脂质的熔点较低,这决定了膜中脂质分子在一般体温条件下是呈液态的,即膜具有某种程度的流动性。脂质双分子层在热力学上的稳定性和它的流动性,能够说明何以细胞可以承受相当大的张力和外形改变而不致破裂,而且即使膜结构有时发生一些较小的断裂,也可以自动融合而修复,仍保持连续的双分子层的形式。观察一内某些吞噬细胞通过毛细血管壁内皮细胞间隙时的变形运动和红细胞通过纤细的毛细血管管腔时被扭曲而不破裂的情况,当会对细胞膜的可变性和稳定性有深刻的印象。当然,膜的这些特性还同膜中蛋白质和膜内侧某些特殊结构(称为细胞架)的作用有关。应该指出的是,膜的流动性一般只允许脂质分子在同一分子层内作横向运动;由于分子的双嗜性,要脂质分子在同一分子层内作“掉头”运动;或由一侧脂质层移到另一侧脂质层,这意味着有极性的磷酸和碱基的一端要穿越膜内部的疏水性部分,这是不容易或要耗能的。
膜蛋白质主要以两种形式同膜脂质相结合:有些蛋白质以其肽链中带电的氨基酸或基团,与两侧的脂质极性基团相互吸引,使蛋白质分子像是附着在膜的表面。这称为表面蛋白质;有些蛋白质分子的肽链则可以一次或反复多次贯穿整个脂质双分子层,两端露出在膜的两侧,这称为结合蛋白质。在用分子生物学技术确定了一个蛋白质分子或其中亚单位的一级结构、即肽链中不同氨基酸的排列顺序后,发现所有结合蛋白质的肽链中都有一个或数个主要由20-30个疏水性氨基酸组成的片段。这些氨基酸又由于所含基团之间的吸引而形成а-螺旋,即这段肽链沿一条轴线个氨基酸残基的螺旋,螺旋的长度大致相当于膜的厚度,因而推测这些疏水的а螺旋可能就是肽链贯穿膜的部分,它的疏水性正好同膜内疏水性烃基相吸引。这样,肽链中有几个疏水性а-螺旋,就可能几次贯穿膜结构;相邻的а-螺旋则以位于膜外侧和内侧的不同长度的直肽链连接(参看图2-7和8)。
细胞膜所含糖类甚少,主要是一些寡糖和多糖链,它们都以共价键的形式和膜脂质或蛋白质结合,形成糖脂和糖蛋白;这些糖链绝大多数是在膜的外面一侧的。这些糖链的意义之一在于以其单糖排列顺序上的特异性,可以作为它们所结合的蛋白质的特异性的“标志”。例如,有些糖链可以作为抗原决定簇,表示某种免疫信息;有些是作为膜受体的“可识别性”部分,能特异地与某种递质、激素或其他化学信号分子相结合。如人的红细胞ABO血型系统中,红细胞的不同抗原特性就是由结合在膜脂质的鞘氨醇分子上的寡糖链所决定的,A型抗原和B型抗原的差别仅在于此糖链中一个糖基的不同。由此可见,生物体内不仅是多聚糖核苷酸中的碱基排列和肽链中氨基酸的排列可以起“分子语言”的作用,而且有些糖类物质中所含糖基序列的不同也可起类似的作用。
既然膜主要是由脂质双分子层构成的,那么理论上只有脂溶性的物质才有可能通过它。但事实上,一个进行着新陈代谢的细胞,不断有各种各样的物质(从离子和小分子物质到蛋白质等大分子,以及团块性固形物或液滴)进出细胞,包括各种供能物质、合成细胞新物质的原料、中间代谢产物和终产物、维生素、氧和二氧化碳,以及Na+、K+、Ca2+离子等。它们理化性质各异,且多数不溶于脂质或其水溶性大于其脂溶性。这些物质中除极少数能够直接通过脂质层进出细胞外,大多数物质分子或离子的跨膜转运,都与镶嵌在膜上的各种特殊的蛋白质分子有关;至于一些团块性固态或液态物质的进出细胞(如细胞对异物的吞噬或分泌物的排出),则与膜的更复杂的生物学过程有关。
溶液中的一切分子都处于不断的热运动中。这种分子运动的平均动能,与溶液的绝对温度成正比。在温度恒定的情况下,分子因运动而离开某一小区的量,与此物质在该区域中的浓度(以mol/L计算)成正比。因此,如设想两种不同浓度的同种物质的溶液相邻地放在一起,则高浓度区域中的溶质分子将有向低浓度区域的净移动,这种现象称为扩散。物质分子移动量的大小,可用通量表示,它指某种物质在每秒内通过每平方厘米的假想平面的摩尔或毫尔数。在一般条件下,扩散通量与所观察平面两侧的浓度差成正比;如果所涉及的溶液是含有多种溶质的混合溶液,那么每一种物质的移动方向和通量,都只决定于各该物质的浓度差,而与别的物质的浓度或移动方向无关。但要注意的是,在电解质溶液的情况下,离子的移动不仅取决于该离子的浓度也取决于离子所受的电场力。
有很多物质虽然不溶于脂质,或溶解度甚上,但它们也能由膜的高浓度一侧向低浓度一侧较容易地移动。这种有悖于单纯扩散基本原则的物质转运,是在膜结构中一些特殊蛋白质分子的“协助”下完成的,因而被称为易化扩散(facilitateddiffusion)。例如,糖不溶于脂质,但细胞外液中的葡萄糖可以不断地进入一般细胞,适应代谢的需要;Na+、K+、Ca+等离子,虽然由于带有电荷而不能通过脂质双分子层的内部疏水区,但在某些情况下可以顺着它们各自的浓度差快速地进入或移出细胞。这些都是易化扩散的例子。易化扩散的特点是:物质分子或离子移动的动力仍同单纯扩散时一样,来自物质自身的热运动,所以易化扩散时物质的净移动只能是由它们的高浓度区移向低浓度区,但特点是它们不是通过膜的脂质分子间的间隙通过膜屏障,而是依靠膜上一些具有特殊结构的蛋白质分子的功能活动,完成它们的跨膜转运。由于蛋白质分子结构上的易变性(包括其构型和构象的改变)和随之出现的蛋白质功能的改变,因而使易化扩散得以进行,并使它处于细胞各种环境因素改变的调控之下。
由载体介导的易化扩散这种易化扩散的特点是膜结构中具有可称为载体(carrier)的蛋白质分子,它们有一个或数个能与某种被转物相结合的位点或结构域(指蛋白质肽链中的某一段功能性氨基酸残基序列),后者先同膜一侧的某种物质分子选择性地结合,并因此而引起载体蛋白质的变构作用,使被结合的底物移向膜的另一侧,如果该侧底物的浓度较低,底物就和载体分离,完成了转运,而载体也恢复了原有的构型,进行新一轮的转运,其终止点是最后使膜两侧底物浓度变得相等。上面提到的葡萄糖进入一般细胞,以及其他营养性物质如氨基酸和中间代谢产物的进出细胞,就属于这种类型的易化扩散。以葡萄糖为例,由于血糖和细胞外液中的糖浓度经常保持在相对恒定的水平,而细胞内部的代谢活动不断消耗葡萄糖而使其胞浆浓度低于细胞外液,于是依靠膜上葡萄糖载体蛋白的活动,使葡萄糖不断进入细胞,且其进入通量可同细胞消耗葡萄糖的速度相一致不同物质通过易化扩散进出细胞膜,都需要膜具有特殊的载体蛋白。
以载体为中介的易化扩散都具有如下的共同特性:(1)载体蛋白质有较高的结构特异性,以葡萄糖为例,在同样浓度差的情况下,右旋葡萄糖的跨膜通量大大超过左旋葡萄糖(人体内可利用的糖类都是右旋的);木糖则几乎不能被载运。(2)饱和现象,即这种易化扩散的扩散通量一般与膜两侧被转运物质的浓度差成正比,但这只是当膜两侧浓度差较小时是如此;如果膜一侧的浓度增加超过一定限度时,再增加底物浓度并不能使转运通量增加。饱和现象的合理解释是:膜结构中与该物质易化扩散有关的载体蛋白质分子的数目或每一载体分子上能与该物质结合的位点的数目是固定的,这就构成了对该物质的量并不能使载运量增加,于是出现了饱和。(3)竞争性抑制,即如果某一载体对结构类似的A、B两种物质都有转运能力,那么在环境中加入B物质将会减弱它对A物质的转运能力,这是因为有一定数量的载体或其结合位点竞争性地被B所占据的结果。目前已经有多种载体从不同动物的各类细胞膜提纯或克隆(clone)。与葡萄糖易化扩散有关的蛋白质的一级结构由一条含近500个氨基酸的肽链组成,而且此肽链有12个疏水性跨膜а-螺旋(二级结构),多次贯穿膜内外,并互相吸引靠拢,形成球形蛋白质分子(三级结构),但其转运葡萄糖时的具体变构过程尚不完全清楚。
2.由通道介导的易化扩散 它们常与一些带电的离子如Na+、K+Ca+、 CI+等由膜的高浓度一侧向膜的低浓度一侧的快速移动有关。对于不同的离子的转运,膜上都有结构特异的通道蛋白质参与,可分为别称为Na+通道、K+通道、Ca+通道等;甚至对于同一种离子,在不同细胞或同一细胞可存在结构和功能上不同的通道蛋白质,如体内至少已发现有三种以上的Ca+通道和7种以上的K+通道等,这种情况与细胞在功能活动和调控方面的复杂化和精密化相一致。通道蛋白质有别于载体的重要特点之一,是它们的结构和功能状态可以因细胞内外各种理化因素的影响而迅速改变:当它们处于开放状态时,有关的离子可以快速地由膜的高浓度一侧移向低浓度一侧;其离子移动的速度是如此之大,因而在关于通道蛋白的分子结构还知之甚少时,就推测是在这种蛋白质的内部出现了一条贯通膜内外的水相孔道使离子能够顺着浓度差(可能还存在着电场力的作用)通过这一孔道,因而其速度远非载体蛋白质的运作速度所能比拟。这是称为通道(channel)的原因。通道对离子的选择性,决定于通道开放时它的水相孔道的几何大小和孔道壁的带电情况,因而对离子的选择性没有载体蛋白那样严格。大多数通道的开放时间都十分短促,一般以数个或数十个ms计算,然后进入失活或关闭状态。于是又推测在通道蛋白质结构中可能存在着类似闸门(gate)一类的基团,由它决定通道的功能状态。许多的离子通道蛋白质已经用分子生物学的技术被克隆,对其结构的研究已证实了上述推测。
通道的开放造成了带电离子的跨膜移动,这固然是一种物质转运形式;但通道的开放是有条件的、短暂的,百离子本身并不像葡萄糖等是一些代谢物,从生理意义上看,载体和通道活动的功能不尽相同。当通道的开放引起带电离子跨膜移动时(如Na+、Ca2+进入膜内或K+移出膜外),移动本身形成跨膜电流(即离子电流);而移位的带电离子在不导电的脂质双分子层(具有电容器的性质)两侧的集聚,将会造成膜两侧电们即跨膜电位的改变,而跨膜电位的改变以及进入膜内的离子、特别是Ca2+,将会引起该通道所在细胞一系列的功能改变。由此可见,通道的开放并不是起转运代谢的作用,而离子的进出细胞,只是把引起通道开放的那些外来信号,转换成为通道所在细胞自身跨膜电位的变化或其他变化,因而是细胞环境因素影响细胞功能活动的一种方式。
主动转运指细胞通过本身的某种耗能过程,将某种物质的分子或离子由膜的低浓度一侧移向高浓度一侧的过程。按照热力学定律,溶液中的分子由低浓度区域向高浓度区域移动,就像举起重物或推物体沿斜坡上移,或使电荷逆电场方向移动一样,必须由外部供给能量。在膜的主动转运中,这能量只能由膜或膜所属的细胞来供给,这就是主动的含义。前述的单纯扩散和易化扩散都属于被动转运,其特点是在这样的物质转运过程中,物质分子只能作顺浓度差、即由膜的高浓度一侧向低浓度一侧的净移动,而它所通过的膜并未对该过程提供能量。被动转运时物质移动所需的能量来自高浓度所含的势能(图示2-3左),因而不需要另外供能(2-3右)。被动转运最终可能达到的平衡点是膜两侧该物质的浓度差为零的情况;如果被动转运的是某种离子,则离子移动除受浓度差的影响外,还受当时电场力的影响,亦即当最终的平衡点达到时,膜两侧的电-化学势*的差为应为零。主动转运与此不同,由于膜以某种方式提供了能量,物质分子或离子可以逆浓度或逆电-化学势差而移动。体内某种物质分子或离子由膜的低浓度一侧向高浓度一侧移动,结果是高浓度一侧浓度进一步升高,而另一侧该物质愈来愈少,甚至可以全部被转运到另一侧。如小肠上皮细胞吸收某些已消化的营养物;肾小管上皮细胞对小管液中某些“有用”物质进行重吸收,均属此现象。由于此过程在热力学上为耗能过程,不可能在无供能的情况下自动进行,因此如果在生物体内出现这种情况,说明有主动的跨膜转运在进行,必定伴随了能源物质(常常是ATP)的消耗。
在细胞膜的主动转运中研究得最充分,而且对细胞的生存和活动可能是最重要的,是膜对于钠和钾离子的主动转运过程。所有活细胞的细胞内液和细胞外液中Na+和K+的浓度有很大的不同。以神经和肌细胞为例,正常时膜内K+浓度约为膜外的30倍,膜外的Na+浓度约为膜内的12倍;这种明显的离子浓度差的形成和维持,要依靠新陈代谢的进行,提示这是一种耗能的过程;例如,低温、缺氧或应用一些代谢抑制剂可引起细胞内外Na+、K+的浓度差减小,而在细胞恢复正常代谢活动后,巨大的浓度差又可恢复。由此认为各种细胞的细胞膜上普遍存在着一种钠-钾泵(sodium-potassium pump)的结构,简称钠泵,其作用是在消耗代谢能的情况下逆烊浓度差将细胞内的Na+移出膜外,同时把细胞外的K+移入膜内,因而保持了膜内高K+和膜外高Na+的不均衡离子分布。
钠泵是镶嵌在膜的脂质双分子层中的一种特殊蛋白质,它除了有对Na+、K+的转运功能外,还具有ATP酶的活性,可以分解ATP使之释放能量,并能利用此能量进行Na+和K+的主动转运;因此,钠泵就是Na+-K+依赖式ATP酶的蛋白质。钠泵蛋白质已用近代分子生物学方法克隆出来,它们是由α-和β-亚单位组成的二聚体蛋白质,肽链多次穿越脂质双分子层,是一种结合蛋白质。α-亚单位的分子量约为100kd,转运Na+、K+和促使ATP分解的功能主要由这一亚单位来完成;β-亚单位的分子量约为50kd,作用还不很清楚。钠泵蛋白质转运Na+、K+的具体机制尚不十分清楚,但它的启动和活动强度与膜内出现较多的Na+和膜外出现较多的K+有关。钠泵活动时,它泵出Na+和泵入K+这两个过程是同时进行或“耦联”在一起的;根据在体内或离体情况下的计算,在一般生理情况下,每分解一个ATP分子,可以使3个Na+移到膜外同时有2个K+移入膜内;但这种化学定比关系在不同情况下可以改变。
细胞膜上的钠泵活动的意义是:(1)由钠泵活动造成的细胞内高K+,是许多代谢反应进行的必需条件;(2)如果细胞允许大量细胞外Na+进入膜内,由于渗透压的关系,必然会导致过多水分了进入膜内,这将引起细胞的肿胀,进而破坏细胞的结构;(3)它能够建立起一种势能贮备。如所周知,能量只能转换而不能消灭,细胞由物质代谢所获得的能量,先以化学能的形式贮存在ATP的高能磷酸键之中;当钠泵蛋白质分解ATP时,此能量用于使离子作逆电-化学势跨膜移动,于是能量又发生转换,以膜两侧出现了具有高电-化学势的离子(分别为K+和Na+)而以势能的形式贮存起来;换句话说,泵出膜外的Na+由于其高浓度而有再进入膜内的趋势,膜内高浓度的K+、则有再有再移了膜的趋势,这就是一种势能贮备。由钠泵造成的离子势能贮备,可用于细胞的其他耗能过程。如下节将详细讨论的Na+、K+等离子在膜两侧的不均衡分布,是神经和肌肉等组织具有兴奋性的基础;由K+、Na+等离子在特定条件下通过各自的离子通道进行的顺电-化学势的被动转运,使这些细胞表现出各种形式的生物电现象。
继发性主动转运钠泵活动形成的势能贮备,还可用来完成一些其他物质的逆浓度差的跨膜转运,这主要见于前面提到的肠上皮和肾小管上皮细胞对葡萄糖、氨基酸等营养物质的较为安全吸收现象,这显然有主动转运过程的参与。但据观察,这种理论上要耗能的过程并不直接伴随ATP或其他供能物质的消耗。这些物质的跨膜转运经常要伴有Na+由上皮细胞的管腔侧同时进入细胞;后者是葡萄糖等进入细胞的必要条件,没有Na+由高浓度的膜外顺浓度差进入膜内,就不会出现葡萄糖等分子逆浓度差进入膜内。在完整的在体肾小管和肠粘膜上皮细胞,由于在细胞的基底-外侧膜(或基侧膜,即靠近毛细血管和相邻上皮细胞侧的膜)上有钠泵存在(图2-4),因而能造成细胞内Na+浓度经常低于小管液和肠腔液中Na+浓度的情况,于是Na+不断由小管液和肠腔液顺浓度差进入细胞,由此释放的势能则用于葡萄糖分子的逆浓度进入细胞。葡萄糖主动转运所需的能量不是直接来自ATP的分解,而是来自膜外Na+的高势能;但造成这种高势能的钠泵活动是需要分解ATP的,因而糖的主动转运所需的能量还是间接地来自ATP,为此把这种类型的转运称为继发性主动转运,或称为联合转运(cotransport)。每一种联合转运也都与膜中存在的特殊蛋白质有关,称为转运体(transporter);而且在不同的情况下,被转运的物质分子有的与Na+移动的方向相同,有时两者方向相反。甲状腺细胞特有的聚碘作用,也属于继发性主动转运。
出胞主要见于细胞的分泌活动,如内分泌腺把激素分泌到细胞外液中,外分泌腺把酶株颗粒和粘液等分泌到腺管的管腔中,以及神经细胞的轴突末梢把神经递质分泌到突触间隙中。根据在多种细胞进行观察,细胞的各种蛋白性分泌物先是在粗面内质网生物合成;在它们由内质网到高尔基复合体的输送过程中,逐渐被一层膜性结构所包被,形成分泌囊泡;后者再逐渐移向特定部位的质膜内侧,准备分泌或暂时贮存。有些细胞的分泌过程是持续进行的,有些则有明显的间断性。分泌过程或一般的出胞作用的最后阶段是:囊泡逐渐向质膜内侧移动,最后囊泡膜和质膜在某点接触和相互融合,并在融合处出现裂口,将囊泡一次性的排空,而囊泡的膜也就变成了细胞膜的组成部分(图2-5)。这个过程主要是由膜外的特殊化学信号或膜两侧电位改变,引起了局部膜中的Ca2+通道的开放,由内流的Ca2+(内流的Ca2+也有的进而引发细胞内Ca2+贮存库释放Ca2+)触发囊泡的移动、融合和排放。最近在肥大细胞的研究表明,囊泡与质膜的融合,可能与预先“装配”在两侧膜上的类似形成细胞间通道的那种蛋白质分子有关(见下节),当两者“对接”时,囊泡内容与细胞外液相沟通;以后由于组成通道的蛋白质各亚单位分散开来,造成原孔洞的扩大,完成囊泡内容的快速排出,囊泡膜也伸展开来,成为细胞膜的一部分。
一种通过被转运物质与膜表面的特殊受体蛋白质相互作用而引起的入胞现象,称为受体介导式入胞。通过这种方式进入细胞的物质已不下50余种,包括以胆固醇为主要成分的血浆低密度脂蛋白颗粒、结合了铁离子的运铁蛋白、结合了维生素B12的运输蛋白、多种生长调节因子和胰岛素等一部分多肽类激素、抗体和某些细菌毒素,以及一些病毒(流感和小儿麻痹病毒)等(图示2-6)。首先是细胞环境中的某物质为细胞膜上的相应受体所“辨认”,发生特异性结合;结合后形成的复合物通过它们在膜结构中的横向移动,逐渐向膜表面一些称为衣被凹陷(coated pit)的特殊部位集中。衣被陷处的膜与一般膜结构无明显差异,只是向细胞内部呈轻度下凹,而且在膜的胞浆侧有一层高电子密度的覆盖物,后者经分析是由多种蛋白质组成的有序结构;当受体复合物的聚集使衣被凹陷成为直径约0.3μm的斑片时(可以在约1分钟的时间内完成),该处出现膜向胞浆侧的进一步凹入,最后与细胞膜断离,在胞浆内形成一个分离的吞食泡,这称为内移(internalization);原来附在衣被凹陷内侧的蛋白性结构,现在正好位于吞食泡膜的外侧,仍面向胞浆;但在吞食泡形成后不久,这种蛋白结构就消失,可能是溶解在胞浆中,大概还可以再用于在细胞膜上形成新的衣被凹陷。这类蛋白质的功能,据认为是为吞食泡的形成提供所需的能量。失去了这种特殊的附膜蛋白结构的吞食泡,进而再与胞浆中称为胞内体(endosome)的球状或管状膜性结构相融合,此胞内体的特点是内部具有较低的PH值环境,有助于受体同与它结合的物质分离;以后的过程是这些物质(如进入细胞的低密度脂蛋白颗粒和铁离子等)再被转运到能利用它们的细胞器,而保留在胞内体膜上的受体,则与一部分膜结构形成较小的循环小泡,移回到细胞膜并与之融合,再成为细胞的组成部分,使受体和膜结构可以重复使用(图2-6)。据测算,在人工培养液中的吞噬细胞1小时内通过形成吞食泡而进入胞浆的细胞膜面积,大约相当于原细胞膜总面积的50%-200%,而实际细胞膜的总面积并未明显改变,可见通过上述以胞内体为转站的膜的再循环,不仅维持了细胞膜的总面积的相对恒定,而且使相应的受体可以反复使用。
不论是单细胞生物或组成多细胞有机体的每一个细胞,在它们的生命过程中,都会不断受到来自外部环境的各种理化因素的影响。在多细胞动物,由于绝大多数细胞是生活在直接浸浴它们的细胞外液、即内环境之中,因此出现在内环境中的各种化学分子,是它们最常能感受到的外来刺激:这不仅是指存在于细胞外液中的激素或其他体液性调节因子;而且就是在神经调节过程中,当神经信息由一个神经元向其他神经元传递或由神经元传给它的效应器细胞时,在绝大多数情况下,也都要通过一种或多种神经递质和调质为中介,通过这些化学分子在距离极小的突触间隙液中的扩散,才能作用到下一级神经元或效应器细胞。尽管激素和递质(或调质)等分子作为化学信号在细胞外液中播散的距离和范围有所不同,但对接受它们影响的靶细胞并不存在本质的差别。
不论是化学信号中的激素分子和递质(包括数十种可能起调质作用神经肽类物质)分子,以及非化学性的外界刺激信号,当它们作用于相应的靶细胞时,都是通过为数不多、作用形式也较为类似的途径来完成跨膜信号传递的;这些过程所涉及的膜蛋白质也为数不多,在生物合成上由几类特定基因家族所编码;正因为如此,由每个特定基因家族所表达生成的蛋白质分子,在肽链的氨基酸排列顺序上有较大的相同性(或同源性,homogeneity),功能上也较为类似。因此,关于跨膜信号传递的研究,早已超出了递质或激素作用机制的范畴,成为细胞生理学中一个有普遍意义的新篇章。试想,人体细胞都具有相同的遗传基因,因而一个感光细胞或一个普通体细胞,通过细胞膜上类似的蛋白质,以类似的方式接受它们所受到的外来刺激,可引起细胞本身功能的改变;而且各种不同的细胞通过少数几类膜蛋白质和几种作用方式,就能接受多种多样可能遇到的外界刺激信号的影响,显然符合“生物经济”的原则。
对这种跨膜信号的传递方式的研究,最早是从对运动神经纤维末梢释放的乙酰胆碱(Ach)如何引起它所支配的骨骼肌细胞兴奋的研究开始的。早已知道,当神经冲动到达神经末梢处时,先是由末梢释放一定数量的Ach分子,后者再同肌细胞膜上称为终板(指有细胞膜上同神经末相对的那部分膜,其中所含膜蛋白与一般肌细胞膜不同)处的“受体”相结合,引起终板膜产生电变化,最后引起整个肌细胞的兴奋和收缩。由于神经-肌接头处的“受体”也可同烟碱相结合,因而过去在药理学分类中称它为N-型Ach受体。80年代后期,我国学者李镇源发现α-银环蛇毒同N-型受体有极高的特异性结合能力又有人发现一些电鱼的电器官中有密集的这种受体蛋白质分子存在;再依靠70年代以来蛋白质化学和分子生物学技术的迅速发展,目前不仅已将这种蛋白质分子提纯,而且基本上搞清了它的分子结构和它们在膜中的存在形式。原来它是由4种不同的亚单位组成的5聚体蛋白质(图2-7),总分子量约为290kd;每种亚单位都由一种mRNA编码,所生成的亚单位在膜结构中通过氢键等非共价键式的相互吸引,形成一个结构为α2βγδ的梅花状通道样结构(图2-7,A和B),而其中的两个α-亚单位正是同两分子ACH相结合的部位,这种结合可引起通道结构的开放,其几何大小足以使终板膜外高浓度的Na+内流,同时也能使膜内高浓度的K+外流结果是使原来存在两侧的静息电位近于消失,亦即使该处膜内外电位差接近于0值,这就是终板电位,于是完成了Ach这种化学信号的跨膜传递,因为肌细胞后来出现的兴奋和收缩都是以终板电位为起因的。
在动物界,除了一些特殊的鱼类,一般没有专门感受外界电刺激或电场改变的器官或感受细胞,但在体内有很多细胞,如神经细胞和各种肌细胞,在它们的细胞膜中却具有多种电压门控通道蛋白质,它们可由于同一细胞相邻的膜两侧出现的电位改变而再现通道的开放,并由于随之出现的跨膜离子流而出现这些通道所在膜的特有的跨膜电位改变。例如,前述的终板膜由Ach门控通道开放而出现终板电位时,这个电位改变可使相邻的肌细胞膜中存在的电压门控式Na+通道和K+通道相继激活(即通道开放),出现肌细胞的所谓动作电位;当动作电位在神经纤维膜和肌细胞膜上传导时,也是由于一些电压门控通道被邻近已兴奋的膜的电变化所激活,结果使这些通道所在的膜也相继出现特有的电变化。由此可见,电压门控通道所起的功能,也是一种跨膜信号转换,只不过它们接受的外来刺激信号是电位变化,经过电压门控通道的开闭,再引起细胞膜出现新的电变化或其他细胞内功能变化,后者在Ca2+通道打开引起膜外Ca2+内流时甚为多见。
根据对Na+、K+、Ca2+三种离子的电压门控通道蛋白质进行的分子结构分析,发现它们一级结构中的氨基酸排列有相当大的同源性,说明它们属于同一蛋白质家族,与之有关的mRNA在进化上由同一个远祖基因演化而来。图2-8是与体内动作电位(见后)产生至关重要的Na+通道在膜内结构的模式图,它主要由一个较大的α-亚单位组成,分子量约260kd;有时还另有一个或两个小分子量的亚单位,分别称为β1和β2。但Na+通道的主要功能看来只靠α-亚单位即可完成。这个较长的α-单位肽链中包含了4个结构类似的结构域(domain,每个结构域大致相当于上述Ach门控通道中的一个亚单位,但结构域之间由肽链相连,是一个完整的肽链,应由一个mRNA编码和合成),而每个结构域中又各有6个由疏水性氨基酸组成的跨膜α-螺旋段(图示2-8,A);这4 个结构域及其所包含的疏水α-螺旋,在膜中包绕成一个通道样结构(图2-8,B)。现已证明,每个结构域中的第4个跨膜α-螺旋在氨基酸序列上有特点,即每隔两个疏水性氨基酸,就再现一个带正电荷的精氨酸或赖氨酸;这些α-螺旋由于自身的带电性质,在它们所在膜的跨膜电位有改变时会产生位移,因而被认为是该通道结构中感受外来信号的特异结构,由此再诱发通道“闸门”的开放;还有实验提示,每个结构域中的第2、第3个α-螺旋构成了该通道水相孔道的“内壁”;据测算,水相孔道内径最窄处横断面积约为0.3×0.5nm差不多刚能通过一个水化的Na+(图2-8,B)。
细胞间信道还有一种通道,不是沟通胞浆和细胞外液的跨膜通道,而是允许相邻细胞之间直接进行胞浆内物质交换的通道,故称为细胞间通道。这种通道研究,是从缝隙连接超微结构观察开始的。在缝隙连接处相邻两细胞的膜仅隔开2.0nm左右,而且像是有某种物质结构把两者连接起来;将两侧细胞膜分离进行超微结构观察和分子生物学分析,发现每一侧的膜上都整齐地地排列着许多蛋白质颗粒,每个颗粒实际是由6个蛋白质亚单位(分子量各为25kd)构成的6聚体蛋白质,中间包绕一个水相孔道;构成颗粒的蛋白质和中心孔道贯穿所在膜的脂质双分子层;在两侧细胞膜靠紧形成细胞间的缝隙连接时,两侧膜上的各颗粒即通道样结构都两两对接起来,于是形成了一条条沟通两细胞胞浆的通路,而与细胞间液不相沟通。这种细胞间通道的孔洞大小,一般可允许分子量小于1.0~1.5kd或分子直径小于1.0nm的物质分子通过,这包括了电解质离子、氨基酸、葡萄糖和核苷酸等。这种缝隙连接或细胞间通道多见于肝细胞、心肌细胞、肠平滑肌细胞、晶状体细胞和一些神经细胞之间。缝隙连接不一定是细胞间的一种永久性结构;至少在体外培养的细胞之间的缝隙连接或其中包含颗粒的多少,可因不同环境因素而变化;似乎是细胞膜中经常有单方面装配好的通道颗粒存在,在两侧膜靠近并有其他调控因素存在时,就有可能实现对接,而在另一些因素存在时,两方面还可再分离。已对接的通道是否处于“开放”状态,也要受到多种因素的调控,例如当细胞内Ca2+、H+浓度增加时,可促使细胞间通道关闭。细胞间通道的存在,有利于功能相同而又密接的一组细胞之间进行离子、营养物质,甚至一些信息物质的沟通,造成它们进行同步性活动的可能性。
这是另一类型的跨膜信号传递。最初是从对激素作用机制的研究开始的。60年代在研究肾上腺素引起肝细胞中糖原分解为葡萄糖的作用机制时,发现如果使肾上腺素单独和分离出的细胞膜碎片相互作用,可以生成一种分子量小、能耐热的物质,当把这种物质同肝细胞的胞浆单独作用时,也能引起其中糖原的分解,同肾上腺素作用于完整的肝细胞时有类似的效应。实验提示,在肾上腺素正常起作用时,它只是作用于肝细胞的膜表面。通过某种发生在膜结构中的过程,先在胞浆中生成一种小分子物质,后者再实现肾上腺素分解糖原的作用。这种小分子物质不久被证明是环-磷酸腺苷(即cAMP,环磷腺苷)。以后又陆续发现,很多其他激素类物质作用于相应的靶细胞时,都是先同膜表面的特异受体相结合,再引起膜内侧胞浆中cAMP含量的增加(有时是它的减少),实现激素对细胞内功能的影响。这样就把cAMP称作第二信使,这是相对于把激素分子这类外来化学信号看作第一信使而言的。
导致cAMP产生的膜结构内部的过程颇为复杂:它至少与膜中三类特殊的蛋白质有关。第一类是能与到达膜表面的外来化学信号作特异性结合的受体蛋白质,这是一些真正可以称作受体的物质。目前已用分子生物学的方法证明,它们是一些独立的蛋白质分子;已经确定的近100种这类受体,都具有类似的分子结构,也属于同一蛋白质家族:即它们都由约300~400个氨基酸残基组成,有一个较长的细胞外N-末端,接着在肽链中出现7个由22~28个主要为疏水性氨基酸组成的α-螺旋,说明这肽链至少要反复贯穿膜7次,形成一个球形蛋白质分子,还有一段位于膜内侧的肽链C-末端。目前认为,受体分子中第7个跨膜螺旋是能够识别、即能结合某种特定外来化学信号的部位;在受体因结合了特异化学信号而激活时,将进而作用于膜中另一类蛋白质,即G-蛋白质。
G-蛋白是鸟苷酸结合蛋白(guaninenucleotide-binding protein)的简称,也是存在于膜结构中的一类蛋白质家族,根据它们分子结构中少数氨基酸残基序列上的不同,已被区分出有数十种,但结构和功能极为相似。G-蛋白通常由α-、β-、和γ-3个亚单位组成;α-亚单位通常起催化亚单位的作用,当G-蛋白未被激活时,它结合了一分子的GDP(二磷酸鸟苷);当G-蛋白与激活了的受体蛋白在膜中相遇时,α-亚单位与GDP分离而又与一分子的GTP(三磷酸鸟苷)结合,这时α-亚单位同其他两个亚单位分离,并对膜结构中(位置靠近膜的内侧面)的第三类称为膜的效应器酶的蛋白质起作用,后者的激活(或被抑制)可以引致胞浆中第二信使物质的生成增加(或减少)。上述肾上腺素的作用,就是先由激素激活膜上相应的受体后,通过一种称为Gs(兴奋性G-蛋白)的G-蛋白的中介,激活了作为效应器酶的腺苷酸环化酶(图2-9箭头1),使胞浆中的ATP生成了起第二信使作用的cAMP(图2-9中箭头2)。由于第二信使物质的生成经过多级催化作用,少数几个膜外化学信号分子同受体的结合,就可能在胞浆中生成数目众多的第二信使分子,这是这种类型的跨膜信号传递的重要特点之一。
由于上述这种跨膜信号传递的形式是在研究激素的作用机制时发现的,而且后来发现绝大多数肽类激素都是通过这一形式起作用的,因此曾一度错误地认为,这只是激素性化学信号跨膜信号传递方式。但近年的资料说明,事实并非如此:在神经递质类物质中,除了上述氨基酸类递质外,其余不论是小分子的经典递质还是后来发现的数量众多的神经肽类物质(目前已近50种),都主要是以在突触后细胞中产生第二信使类物质来完成跨膜信号传递的,这些第二信使物质通过在胞浆中的扩散,在膜的内侧面作用于某些特殊的离子通道(图2-9中箭头3),引起突触后膜较广泛而缓慢的电变化。最近证明,在视网膜信号转换过程中,光量子被作为受体的视色素如视紫红质(也具有7个跨膜α-螺旋的结构特点)吸收后,也是先激活称为Gt(转换蛋白)的G-蛋白,再激活作为效应器的磷酸二酯酶,使视杆细胞外段中cGMP的分解加强,最后使光刺激转变为外段膜的电变化(见第九章)。
上述两种主要的跨膜信号传递方式的作用过程,有以下几点值得注意。第一,这两种作用形式并不是绝对分离的,两者之间可以互相影响或在作用上有交叉。一些第二信使类物质可以调节某些电压门控通道和化学门控通道蛋白质的功能状态;而且被某种受体激活了的G-蛋白,有的不通过第二信使就能直接作用于膜结构中的通道结构(图2-9中的箭头5),如上述Gs激活时可以直接打开Ca2+通道。第二,对于许多外来化学信号分子,并不是一种化学信号只能作用于两种跨膜信号传递系统中的一种;以ACh为例,当它们作用于神经-肌接头处时,终板膜上有同它们作特异结合的化学门控通道;但当ACh作用于心肌或内脏平滑肌时,遇到的却是受体-G-蛋白-第二信使系统(受体称为M-型毒蕈硷型受体)。由此可见,同一种刺激信号通过何种跨膜信号传递系统起作用,关键因素在于靶细胞膜上具有何种感受结构;近年还发现,即便是M-型ACh受体,也可再区分出许多种亚型,有的亚型以cAMP为第二信使,有的以IP3和DG为第二信使。不同细胞甚或同一细胞的膜上具有对应于同一化学信号的不同受体型或其亚型,在跨膜信号传递中并不少见。近年来发现基本嗅觉刺激(大约是7种)全都是通过嗅上皮中不同的膜受体-第二信使系统起作用的,但在4种基本味觉刺激中,只有咸和酸刺激是通过细胞上相应的化学门控上通道起作用的,甜味物质是通过受体-第二信使系统起作用的,而苦味物质则因物质分子不同而分别通过通道和受体两种途径起作用。第三,跨膜信号传递的方式虽然相对地较少,但也不一定只限于上述两种。近年来有一些特殊的化学信号影响其靶细胞的方式受到广泛的重视,很可能成为跨膜信号传递的一种新类型;这就是发现胰岛素等一些肽类激素和其他与机体发育、生长、修复、增生、甚至细胞癌变有关的因子,如神经生长因子、表皮生长因子、血小板源生长因子、纤维母细胞生长因子、以及与细胞生成有关的集落刺激因子等,都是通过靶细胞表面一类称为酪氨酸激酶受体(tyrosine kinase riceptor)的蛋白质起作用的,这类受体结构简单,只有一个跨膜α-螺旋,当位于膜外侧的较长的肽链部分同特定的化学信号结合后,可以直接引起受体肽链的膜内段激活,使之具有磷酸激酶活性,通过使自身肽链和膜内蛋白质底物中的酪氨酸残基发生磷酸化,因而产生细胞内效应。这方面的新资料正在积累之中。
癌基因和跨膜信号传递近年发现与上述跨膜信号传递有关的一些蛋白质,如受体、G-蛋白、各种生长刺激因子和营养因子、以及各种蛋白激酶等,它们在细胞内的生物合成,是由人正常染色体中被称为细胞原癌基因(cellular proto-oncogene,进行表达时称细胞癌基因)的一类基因所编码和表达生成的。这些基因所以被称为原癌基因,是因为它们的硷基排列顺序同一些(近100种)能在动物引起肿瘤的病毒DNA(或称病毒癌基因,viral oncogene)的硷基排列顺序相一致。关于细胞癌基因与人类肿瘤发生的关系目前尚不清楚,但它们的正常表达产物,却是人体无时无刻不在进行着的各种跨膜信号传递过程所必需的。试设想,如果由于遗传和变异等原因使细胞不能合成结构和功能正常的G-蛋白,对人体将会有何等广泛而重要的影响!另外,在细胞原癌基因中,有一类可被胞浆中产生的第二信使等物质所激活,生成某种蛋白质;但它们在胞浆中生成后,一般又进入核内,进而诱导另一些基因进行表达。这类癌基因从激活到蛋白质生成,比一般基因表达为快,称为快速基因(或即早基因),而它们生成的蛋白质的作用则是激活另一些(可能在细胞功能活动中更重要)基因的表达,故快速基因的表达产物可称为转录调节因子或第三信使。所以称为第三信使是因为它们由第二信使类物质的作用而生成,而它们自身的作用又引起新的基因表达,生成一些可能对细胞结构和功能有较长远影响的蛋白质。这样外来信号(第一信使)不仅通过第二信使的合成在胞浆中引起一些即时反应,还可能通过第三信使引起细胞功能和结构长时间的适应性改变。
上世纪中后期的生理学家用两栖类动物做实验时,发现青蛙或蟾蜍的某些组织在离体的情况下,也能在一定的时间内维持和表现出某些生命现象。这些生命现象的表现之一是:当这些组织受到一些外加的刺激因素(如机械的、化学的、温热的或适当的电刺激)作用时,可以应答性出现一些特定的反应或暂时性的功能改变。这些活组织或细胞对外界刺激发生反应的能力,就是生理学最早对于兴奋性(excitability)的定义。例如,把蟾蜍的腓肠肌和支配它的神经由体内剥离出来,制成神经-肌肉标本,这时如果在神经游离端一侧轻轻地触动神经,或通以适当的电流,那么在经过一个极短的潜伏期后,可以看到肌肉出现一次快速的缩短和舒张;如把刺激直接施加于肌肉,也会引起类似的收缩反应;而且只要刺激不造成组织的损伤,上述反应可以重复出现。这就是神经和肌肉组织具有兴奋性能证明。实际上,几乎所有活组织或细胞都具有某种程度的对外界刺激发生反应的能力,只是反应的灵敏度和反应的表现形式有所不同。在各种动物组织中,一般以神经和肌细胞,以及某些腺细胞表现出较高的兴奋性;这就是说它们只需接受较小的程度的刺激,就能表现出某种形式的反应,因此称为可兴奋细胞或可兴奋组织。不同组织或细胞受刺激而发生反应时,外部可见的反应形式有可能不同,如各种肌细胞表现机械收缩,腺细胞表现分泌活动等,但所有这些变化都是由刺激引起的,因此把这些反应称之为兴奋(excitation)。人和高等动物的细胞和组织一样具有兴奋性,但在离体情况下要保持它们的兴奋性,需要严格的环境条件,因此在研究组织的兴奋性时,常用较低等动物的组织作为观察对象。
随着电生理技术的发展和资料的积累,兴奋性和兴奋的概念有了新的含义。大量事实表明,各种可兴奋细胞处于兴奋状态时,虽然可能有不同的外部表现,但它们都有一个共同的、最先出现的反应,这就是受刺激处的细胞膜两侧出现一个特殊形式的电变化(它由细胞本身所产生,不应与作为刺激使用的外加电刺激相混淆),这就是动作电位;而各种细胞所表现的其他外部反应,如机械收缩和分泌活动等,实际上都是由细胞膜的动作电位进一步触发和引起的。在神经细胞,特别是它的延续很长、起着信息传送作用的轴突(神经纤维),在受刺激而兴奋时并无肉眼可见的外部反应,其反应只是用灵敏的电测量仪器才能测出的动作电位。在多数可兴奋细胞(以神经和骨骼肌、心肌细胞为主),当动作电位在受刺激部位产生后,还可以沿着细胞膜向周围扩布,使整个细胞膜都产生一次类似的电变化。既然动作电位是大多数可兴奋细胞受刺激时共有的特征性表现,它不是细胞其他功能变化的伴随物,而是细胞表现其他功能的前提或触发因素,因此在近代生理学中,兴奋性被理解为细胞在受刺激时产生动作电位的能力,而兴奋一词就成为产生动作电位的过程或动作电位的同义语了。只有那些在受刺激时能出现动作电位的组织,才能称为可兴奋组织;只有组织产生了动作电位时,才能说组织产生了兴奋。这样的理解显然比原定义更严格些。
具有兴奋性的组织和细胞,并不对任何程度的刺激都能表现兴奋或出现动作电位。刺激可以泛指细胞所处环境因素的任何改变;亦即各种能量形式的理化因素的改变,都可能对细胞构成刺激。但实验表明,刺激要引起组织细胞发生兴奋,必须在以下三个参数达到某一临界值:刺激的强度、刺激的持续时间以及刺激强度对于时间的变化率(即强度对时间的微分);不仅如此,这三个参数对于引起某一组织和细胞的兴奋并不是一个固定值,它们存在着相互影响的关系。在实验室中,常用各种形式的电刺激作为人工刺激,用来观察和分析神经或各种肌肉组织的兴奋性,度量兴奋性在不同情况下的改变。这是因为电刺激可以方便地由各种电仪器(如电脉冲和方波发生器等)获得,它们的强度、作用时间和强度-时间变化率可以容易地控制和改变;并且在一般情况下,能够引起组织兴奋的电刺激并不造成组织损伤,因而可以重复使用。
为了说明刺激的各参数之间的相互关系,可以先将其中一个参数固定于某一数值,然后观察其余两个的相互影响。例如,当使用方波刺激时,由于不同大小和持续时间的方波上升支都以同样极快的增加速率达到某一预定的强度值,因而可以认为上述第三个参数是固定不变的,而每一方波电刺激能否引起兴奋,就只决定于它所达到的强度和持续的时间了。在神经和肌组织进行的实验表明,在强度-时间变化率保持不变的情况下,在一定的范围内,引起组织兴奋所需的最小刺激强度,与这一刺激所持续的时间呈反变的关系;这就是说,当刺激的强度较大时,它只需持续较短的时间就足以引进组织的兴奋,而当刺激的强度较弱时,这个刺激就必须持续较长的时间才能引起组织的兴奋。但这个关系只是当所用强度或时间在一定限度内改变时是如此。如果将所用的刺激强度减小到某一数值时,则这个刺激不论持续多么长也不会引起组织兴奋;与此相对应,如果刺激持续时间逐资助缩短时,最后也会达到一个临界值,即在刺激持续时间小于这个值的情况下,无论使用多么大的强度,也不能引起组织的兴奋。
上述情况给比较不同组织的兴奋性高低或测量同一组织在不同生理或病理情况下的兴奋性改变时造成了许多困难。如果不仔细思考,可以认为那些用较小的刺激强度就能兴奋的组织具有较高的兴奋性;据上述,这个强度小的程度,还要决定这个刺激的持续时间和它的强度-时间变化率。因此,简单地用刺激强度这一个参数表示不同组织兴奋性的高低或同一组织兴奋性的波动,就必须使所用刺激的持续时间和强度-时间变化率固定某一(应是中等程度的)数值;这样,才能把引起组织兴奋、即产生动作电位所需的最小刺激强度,作为衡量组织兴奋性高低的指标;这个刺激强度称为阈强度或阈刺激,简称阈值(threshold)。强度小于阈值的刺激,称为阈下刺激;阈下刺激不能引起兴奋或动作电位,但并非对组织细胞不产生任何影响。
为了示证这一特性,可以让两个刺激连续作用于组织,这时让第一个刺激的强度相当于阈强度,以便使它能引起组织兴奋,并以此阈强度的值作为该组织兴奋性的“正常”对照值;对于第二个刺激,在实验中要能任意地选定它们和第一刺激的间隔,并且可以按需要改变它们的强度。这样,可以检查组织在因第一个刺激后的不同时间内,接受新刺激的能力是否发生了改变。实验证明,在组织接受前面一个刺激而兴奋后一个较短的时间内,无论再受到多么强大的刺激,都不能再产生兴奋;即在这一时期内出现的任何刺激均“无效”;这一段时期,称为绝对不应期。在绝对不应期之后,第二个刺激有可能引起新的兴奋,但使用的刺激强度必须大于该组织正常的阈强度;这个时期称为相对不应期。上述绝对和相对不应期的存在,反映出组织在一次兴奋后所经历的兴奋性改变的主要过程;即在绝对不应期内,由于阈强度成为无限大,故此时的兴奋性可认为下降到零;在相对不应期内,兴奋性逐渐恢复,但仍低于正常值,此时需使用超过对照阈强度的刺激强度,才能引起组织的兴奋;到相对不应期结束时,兴奋性才逐渐恢复到正常。用更精密的实验发现,在相对不应期内之后,组织还经历了一段兴奋性先是轻度增高,继而又低于正常的时期,分别称为超常期和低常期。以上各期的长短,在不同细胞可以有很大差异;一般绝对不应期较短,相当于或略短于前一刺激在该细胞引起的动作电位主要部分的持续时间,如它在神经纤维或骨骼肌只有0.5~2.0ms左右,在心肌细胞可达200~400ms;其他各期的长短变化较大,易受代谢和温度等因素的影响。在神经纤维,相对不应期约持续数毫秒,超常期和低常期可达30~50ms。
组织在每次兴奋后都要发生一系列兴奋性的改变,如果在这期间组织受到新的刺激,它的反应能力将异于“正常”。既然绝对不应期的持续时间相当于前次刺激所引起的动作电位主要部分的持续时间,那么在已有动作电位存在的时期就不可能产生新的兴奋或动作电位,亦即细胞即便受到连续的快速刺激,也不会出现两次动作电位在同一部位重合的现象;由于同样的理由,不论细胞受到频率多么高的连续刺激,它在这一细胞所能引起的兴奋或动作电位的次数,总不会超过某一个最大值;因为落于前一刺激所产生的绝对不应期内的后续刺激将“无效”,因此这个最大值理论上不可能超过该细胞和组织的绝对不应期的倒数。例如,蛙的有髓神经纤维的绝对不应期或动作电位的持续时间约为2ms,那么此纤维每秒钟内所能产生的动作电位的次数不可能超过500;实际上神经纤维在体内自然情况下所能产生和传导的神经冲动的频率,远远低于它们理论上可能达到的最大值。
前已指出,神经在接受刺激时,虽然不表现肉眼可见的变化,在受刺激的部位产生了一个可传导的电变化,以一定的速度传向肌肉,这一点可以用阴极射线示波器为主的生物电测量仪器测得,如图2-10所示。图中由射线管右侧电子枪形成的电子束连续射向荧光屏,途中经过两对板状的偏转电极;当电子束由水平偏转板两极之间通过时,由于板上有来自扫描发生器装置的锯齿形电压变化,使射向荧光屏的电子束以一定的速度作水平方向的反复扫动;这时,如果把由两个测量电极引导来的生物电变化经放大器放大后加到垂直偏转板的两极,那么电子束在作横扫的同时又作垂直方向的移动。这样,根据移动电子束在荧光屏上形成的光点的轨迹,就能准确地测量出组织中的微弱电变化的强度及其随时间变化的情况。如果神经干在右端受到刺激,神经纤维将产生一个传向左端的动作电位,当它传导到同放大器相导到同放大器相连的第一个引导电极处时,该处的电位暂时变得相对地较负,于是在一对垂直偏转板上再现电位差,在荧光屏上可看到一次相应的光点波动;当动作电位传导到第二个引导电极处时,该处也将变得较负,于是荧光屏上会出现另一次方向相反的光点波动;这样记到的两次电位波动,称作双相动作电位。把神经标本作一些特殊处理,如将第二个记录电极下方的神经干损伤(如图2-10所示),使该处不能产生兴奋,那么再刺激神经右端时,在示波器上只能看到一次电位波动,这称为单相动作电位。另外,用其他技术方法还可使记录电极中的一个电极处的电位保持恒定或经常处于零电位状态,亦即使此电极成为参考或无关电极,于是在实验中记录到的电变化就只反映与另一电极(称为有效电极)接触处的组织或细胞的电变化,这称为单极记录法。
双相或单相动作电位,是在神经干或整块肌肉组织上记录到的生物电现象,是许多在结构和功能上相互独立的神经纤维或肌细胞的电变化的复合反映;由于测量电极和组织有较大的接触面积,而且组织本身又是导电的,许多细胞产生的电变化可被同一电极所引导,所以记录和测量出的电变化是许多单位的电变化和代数叠加。但目前已经确知,生物电现象是以细胞为单位产生的,是以细胞膜两侧带电离子的不均衡分布和选择性离子跨膜转运为基础的。因此,只有在单一神经或肌细胞进行生物电的记录和测量,才能对它的数值和产生机制进行直接和深入的分析。由于一般的细胞纤小脆弱,单一细胞生物电是通过以下方法测量的:一是利用某些无脊椎动物特有的巨大神经或肌细胞,如枪乌贼的神经轴突,其直径最大可达100μm左右,便于单独剥出进行实验观察,脊椎动物的单一神经纤维也可以设法剥出,但它们的直径最粗也不过20μm左右,方法上较为困难。另一种方法是进行细胞内微电极记录,即用一个金属或细玻璃管制成的充有导电液体而尖端直径只有1.0μm或更细的微型记录电极(凌宁和Gerard,1949),由于它只有尖端导电,可用它刺入某一个在体或离体的细胞或神经纤维的膜内,测量细胞在不同功能状态时膜内电位和另一位于膜外的参考电极之间的电位差(即跨膜电位),这样记录到的电变化,只与该细胞有关而几乎不受其他细胞电变化的影响。
现通过图2-11中的实验布置,观察单一神经纤维动作电位的产生和波形特点,由图中可见,当神经纤维在安静状况下受到一次短促的阈刺激或阈上刺激时,膜内原来存在的负电位将迅速消失,并且进而变成正电位,即膜内电位在短时间内可由原来的-70~-90mV变到+20~+40mV的水平,由原来的内负外正变为内正外负。这样,整个膜内外电位变化的幅度应是90~130mV,这构成了动作电位变化曲线的上升支;如果是计算这时膜内电位由零值变正的数值,则应在整个幅值中减去膜内电位由负上升到零的数值,在图2-11中约为35mV,即动作电位上升支中零位线以上的部分,称为超射值。但是,由刺激所引起的这种膜内外电位的倒转只是暂时的,很快就出现膜内电位的下降,由正值的减小发展到膜内出现刺激前原有的负电位状态,这构成了动作电位曲线的下降支。由此可见,动作电位实际上是膜受刺激后在原有的静息电位基础上发生的一次膜两侧电位的快速而可逆的倒转和复原;在神经纤维,它一般在0.5~2.0ms的时间内完成,这使它在描记的图形上表现为一次短促而尖锐的脉冲样变化,因而人们常把这种构成动作电位主要部分的脉冲样变化,称之为锋电位。在锋电位下降支最后恢复到静息电位水平以前,膜两侧电位还要经历一些微小而较缓慢的波动,称为后电位,一般是先有一段持续5~30ms的负后电位,再出现一段延续更长的正后电位,如图2-11下所示(这里负后和正后电位两个术语仍沿用动作电位细胞外记录时的命名;确切地说,负后电位应称为去极化后电位,而正后电位应称为超极化后电位)。锋电位存在的时期就相当于绝对不应期,这时细胞对新的刺激不能产生新的兴奋;负后电位出现时,细胞大约正处于相对不应期和超常期,正后电位则相当于低常期。
动作电位或锋电位的产生是细胞兴奋的标志,它只在刺激满足一定条件或在特定条件下刺激强度达到阈值时才能产生。但单一神经或肌细胞动作电位产生的一个特点是,只要刺激达到了阈强度,再增加刺激并不能使动作电位的幅度有所增大;也就是说,锋电位可能因刺激过弱而不出现,但在刺激达到阈值以后,它就始终保持它某种固有的大小和波形。此外,动作电位不是只出现在受刺激的局部,它在受刺激部位产生后,还可沿着细胞膜向周围传播,而且传播的范围和距离并不因原初刺激的强弱而有所不同,直至整个细胞的膜都依次兴奋并产生一次同样大小和形式的动作电位。图2-11的实验布置中,神经受刺激部位和记录部位之间有一段距离;但不论记录电极在职一神经纤维上如何移动(除非是在纤维末梢处有了纤维形态的改变,或纤维的离子环境等因素发生了改变),我们一般都能记录到同样大小和波形的锋电位,所不同的只是刺激伪迹和锋电位之间的间隔有所变化,这显然与动作电位在神经纤维上“传导”到记录电极所在部位时所消耗的时间长短有关。这种在同一细胞上动作电位大小不随刺激强度和传导距离而改变的现象,称作“全或无”现象,其原因和生理意义将在下面讨论。
早在1902年,Bernstein就提出膜学说,他根据当时关于电离和电化学的理论成果提出了经典的膜学说来解释当时用粗劣的电测量仪器记录到的生物电现象。他认为细胞表面膜两侧带电离子的不同分布和运动,是产生物电的基础。但在当时和以后相当长的一段时期内,还没有测量单一细胞电活动的手段和其他有关技术,因此他的学说长期未能得到证实。直到本世纪40~50年代,Hodgkin 和Huxley等开始利用枪乌贼的巨大神经轴突和电生理学技术,进行了一系列有意义的实验,不仅对经典膜学说关于静息电位产生机制的假设予以证实,而且对动作电位的产生作了新的解释和论证。通过这一时期的研究,对于可兴奋细胞静息电位和动作电位的最一般原理已得到阐明,即细胞生物电现象的各种表现,主要是由于某些带电离子在细胞膜两侧的不均衡分布,以及膜在不同情况下对这些离子的通透性发生改变所造成的。但是由于当时对细胞膜的分子结构和膜中蛋白质的存在形式和功能还知之甚少,因此Hodgkin等对生物电的理解只能是宏观的,对微细过程只能用数学模型来说明。随着70年代以来蛋白质化学和分子生物学技术的迅速发展,蛋白质分子从膜结构中克隆出来,并从它们的分子结构的特点来说明通道的功能特性;特别是70年代中期发展起来的膜片钳(patch clamp)技术,可以观察和记录单个离子通道的功能活动,使宏观的所谓膜对离子通透性或膜电导的改变,得到了物质的、可测算的证明。
1.静息电位和K+平衡电位Bernstein最先提出,细胞内外钾离子的不均衡分布和安静状态下细胞膜主要对K+有通透性,可能是使细胞能保持内负外正的极化状态的基础。已知所有正常生物细胞细胞内的K+浓度超过细胞外K+很多,而细胞外Na+浓度超过细胞内Na+浓度很多,这是Na+泵活动的结果;在这种情况下,K+必然会有一个向膜外扩散的趋势,而Na+有一个向膜内扩散趋势。假定膜在安静状态下只对K+有通透的可能,那么只能有K+移出膜外,这时又由于膜内带负电荷的蛋白质大分子不能随之移出细胞,于是随着K+移出,出现膜内变负而膜外变得较正的状态。K+的这种外向扩散并不能无限制地进行,这是因为移到膜外的K+所造成的外正内负的电场力,将对K+的继续外移起阻碍作用,而且K+移出的愈多,这种阻碍也会愈大。因此设想,当促使K+外移的膜两侧K+浓度势能差同已移出K+造成的阻碍K+外移的电势能差相等,亦即膜两侧的电-化学(浓度)势代数和为零时,将不会再有K+的跨膜净移动,而由已移出的K+形成的膜内外电位差,也稳定在某一不再增大的数值。这一稳定的电位差在类似的人工膜物理模型中称为K+平衡电位。Bernstein用这一原理说明细胞跨膜静息电位的产生机制。不难理解,K+平衡电位所能达到的数值,是由膜两侧原初存在K+浓度差的大小决定的,它的精确数值可根据物理化学上著名的Nernst公式(1889)算出:
为了进一步证实这一理论,Hodgkin等又用人工地改变标本浸溶液中K+浓度即[K+]o,因而也改变了[K+]o/[K+]i值的实验方法,观察到所记录的静息电位的什也随[K+]o的改变而改变,而改变的情况基本上同根据式(2)计算出的预期值相一致。随后用微电极细胞内记录法在纤细的哺乳类标本也进行了类似的实验,得到类似的结果,如在骨骼肌细胞测得的静息电位为-90mV,而计算所得的Ek值为-95mV。这些实验都说明,大多数细胞的静息电位的产生,是由于正常细胞的细胞内液高K+而膜在安静时又主要对K+有通透能力的结果;至于静息电位的数值为何略小于理论上的Ek值,一般认为是由于膜在静息时对Na+也有极小的通透性(大约只有K+通透性的1/50~1/100)的缘故;由于膜外Na+浓度大于膜内,即使小量的Na+逸入膜内也会抵消一部分K+外移造成的膜内负电位。
2.锋电位和Na+平衡电位Hodgkin等根据兴奋时膜内不仅出现负电位的消失,而且出现一定数值的正电位(相当于前面提到的超射值)的事实,因而认为对动作电位上升支的出现,不能像Bernstein那样简单地解释为膜对K+通透性的消失,因为这样最多也只能使膜内原有的负电位回升到零。他们据此设想膜在受到刺激时可能出现了膜对Na+通透性的突然增大,超过了K+的通透性,由于细胞外高Na+,而且膜内静息时原已维持着的负电位也对Na+的内流起吸引作用,于是Na+迅速内流,结果先是造成膜内负电位的迅速消失;而且由于膜外Na+的较高的浓度势能,Na+在膜内负电位减小到零电位时仍可继续内移,直至内移的Na+在膜内形成的正电位足以阻止Na+的净移入时为止。不难设想,这时膜内所具有的电位值,理论上应相当于根据膜内外Na+浓度差代入Nernst公式时所得出的Na+平衡电位值(可写为ENa)。实验数据证明,动作电位所能达到的超射值,即膜内正电位的数值,正相当于计算所得的ENa;而且实验中随着标本浸溶液中Na+被同等数目的葡萄糖分子所代替(使[Na+]o逐渐减小),可以看到所能记录到的动作电位的超射值和整个动作电位的幅度也逐渐减小,其程度也同按Nernst公式算出的预期值基本一致。
细胞每兴奋一次或产生一次动作电位,总有一部分Na+在去极化时进入膜内,一部分K+在复极时逸出膜外,但由于离子移动受到各该离子的平衡电位的限制,它们的实际进出量是很小的;据估计,神经纤维每兴奋一次,进入膜内的Na+量大约只能使膜内的Na+浓度增大约八万分之一,复极时逸出的K+量也类似这个数量级;即便神经连续多次产生兴奋,短时间内也不大可能明显地改变膜内高K+和膜外高Na+这种基本状态,而只要这种不均衡离子分布还能维持,静息电位就可以维持,新的兴奋就可能产生。细胞膜两侧K+、Na+离子的不均衡分布,主要是靠钠泵蛋白质消耗代谢能建立起来的,而由此形成的势能贮备却可供细胞多次产生兴奋而不需当时耗氧供能。不过实际上钠泵的活动又受膜内外Na+、K+浓度的调控,它对膜内Na+浓度增加十分敏感,Na+的轻微增加就能促使钠泵的活动,因此在每次兴奋后的静息期内,都有钠泵活动的一定程度的增强,将兴奋时多进入膜内的Na+泵出,同时也将复极时逸出膜外的K+泵入,使兴奋前原有的离子分布状态得以恢复。这时由于两种离子的转运同时进行,出入的离子总数又近于相等,故一般不伴有膜两侧电位的明显改变。但在膜内Na+蓄积过多而使钠泵的活动过度增强时,上述的定比关系可以改变,结果是泵出的Na+量有可能明显超过泵入的K+量,这就可能使膜内负电荷相对增多,使膜两侧电位向超极化的方向变化;这时的钠泵,就称为生电性钠泵。有人认为,锋电位以后出现的正后电位,是由于生电性钠泵作用的结果。至于负后电位,则一般认为是在复极时迅速外流的K+蓄积在膜外侧附近,因而暂时阻碍了K+外流的结果。
3.经典的电压钳(或电压固定)实验从上述可知,Hodgkin等对于动作电位产生机制的说明,关键在于膜受刺激时对Na+、K+的通透性发生了有选择而时间亦有先后的改变,但这只是根据所测得的膜内外电位改变对照Nernst公式进行的推论,实验并没有对膜的通透性进行直接的测量和动态描述。为此,他们又应有当时最先进的电子学技术,设计和进行了著名的电压钳(voltage clamp)实验。实验的设计根据是:离子作跨膜移动时形成了跨膜离子电流(I),而通透性亦即离子通过膜的难易程度,就是膜的电阻(R)或其倒数电导(G),因此所谓膜对某种离子通透性增大时,实际是膜对该离子的电导加大;对于带电离子来说,膜电导就是膜通透性的同义语。根据欧姆定律,I=VG,可知在膜两侧电位差(V)固定不变的条件下,测出的跨膜电流I的变化,就可作为膜电导变化的度量。测定膜在受刺激时跨膜电流的改变在技术上是容易的,但在这过程中要保持膜电位固定不变却不容易;因为当存在跨膜离子电流时,离子的进出膜会使不导电而有电容(C)特性的脂质膜充电或放电,因而根据V=Q/C的关系(其中Q为电量,相当于I和时间t的乘积),跨膜离子的移动必然要引起跨膜电位的改变;实际上记录到的动作电位就是这种改变。正因为如此,Hodgkin等自行设计了一种应用负反馈原理的电子学装置,使它们能在跨膜电位维持恒定(恒定的数值可由实验者通过实验装置预先设定)的情况下,测量跨膜离子电流的强度改变,并由此计算出膜电导即膜通透性的变化情况。电压钳实验的基本原理模式图如图2-12所示。图中电极1插入巨大神经轴突内一定距离,用来测量和监察这一段轴突膜内的电位,此电极先连到一个电压放大器,再在一个示波器上显示;电极1测得电位值经放大后同时输给一个负反馈放大器(FBA),这是整个仪器设计的关键部分,它可把测得的膜内电位同来自一个电压源的、由实验者预先设定的要求保持恒定的电位值进行比较,如果二者有差值,FBA就会通过电极2向轴突膜内输出相应强度和方向的电流,由于仪器线路的精密设计和快速反应,电极2输出电流的改变正足以补偿标本由于跨膜离子电流使膜充放电而引起的跨膜电位的变动,于是与电极1相边的示波器上显示出膜内电位固定在设定的数值,而在电流放大器IA上测得的跨膜离子电流的变化,就反映了膜电导的变化。
电压固定实验获得了许多有意义的结论。首先一点是,只有设定的膜内电位固定在去极化水平时,才有可能出现膜的Na+电导(GNa)和K+电导(Gk)的增大,并且设定电位愈接近零值,电导的增大也愈明显;相反,如果设定的膜内电位值是超极化的,则不可能引起跨膜离子电流和膜电导的改变,这一点以后还要谈到。以图2-13的记录曲线为例,分析不同离子的电导在一次兴奋过程中的变化情况。图中最上方曲线表示在一次电压钳实验中,把膜内电位由静息时的-65mV突然固定(这就是(clamp)的意思)在-9mV,结果很快引起一次如曲线A的跨膜电流变化曲线,这曲线的开始部分是内向的,以后逐渐转变为外向电流。只记录到内向或外向电流还不能说明电荷的携带者是何种离子,根据过去的实验者有理由认为,先出现的内向电流可能是Na+电流(INa),外向电流则可能是K+电流(Ik)。用附加的实验观察证明了这点:假定把标本浸浴液中的NaCI用相同摩尔数的氯化胆碱来代替,则在同样的条件下只能记录到较晚出现的曲线B,它是外向的,这显然是因为不能出现内向的INa的结果;把曲线A和B逐点相减,就能得到曲线C,它就是内向的INa;由INa、Ik两条曲线,就可算出GNa和Gk的变化曲线)GNa和Gk都是电压依从性的,只能由跨膜电位的去极化所激活,但GNa被激活得早,是动作电位上升支出现的基础,而Gk激活出现缓慢,是动作电位复极到静息电位水平的基础;(2)GNa有失活(inactivation)状态而Gk没有此特性,其证明是图2-13中曲线ms,以后跨膜电压虽仍固定在-9mV的水平,但GNa早已恢复到原初水平,而代表Gk的曲线B虽然出现较晚,但它在设定电位持续期间一直维持在较同的水平。GNa失活的出现和Gk的激活是造成神经纤维和骨骼肌细胞表现短促的锋电位的原因;在膜复极以后GNa的失活状态才能消失,这时GNa才能因膜的去极化而再出现增大。
4.膜片钳实验和单通道离子电流的记录通过上节关于电压门控通道的特性分析已知,所谓膜对某种离子通透性的改变,实际上决定于膜结构中有关离子通道蛋白质分子的功能状态;例如,Hodgkin等测出的GNa的变化,实际是那一段轴突膜上众多的电压门控式Na+通道因膜的去极化而开放的结果。在Hodgkin等当时进行的膜电导改变的数学模拟中,已经明确提示,GNa和Gk的改变不是均匀地发生在整个膜平面上,而是与膜上某些特定的“点”有关,不久又发现,有些药物可以选择性地阻断某种离子的跨膜移动,如河豚毒可以单独阻断GNa而不影响Gk,四乙基铵可以单独阻断Gk而不影响GNa;以同位素标记的河豚毒只能与膜上某些特殊的“点”作特异性结合,而标记的四乙基铵只能与另一些“点”结合。这些实验以及兴奋过程中离子移动数目之多与快,逐渐使人们推断膜结构中有特殊的蛋白质离子通道的存在。这说明,“通道”概念的提出,远在通道的实质被阐明以前,是前者促进了对后者的进一步探索。70年代中期由Neher和Sakmann等发展出一种能够记录膜结构中单一的离子通道蛋白质分子的开放和关闭、亦即测量单通道离子电流和电导的技术,称为膜片钳实验。
从Neher等最初用膜片钳技术观察骨骼肌终板膜处的单一ACh-门控通道机能特性开始,已经对多种通道进行了观察,发现它们一般有如下共同特性:(1)不论是化学门控或电压门控通道,它们的开放和关闭都是突然的,使描绘出的电流曲线呈方波状,说明相应的蛋白质分子可以从一种构象快速地跃变到另一种构象;(2)每种通道开放时具有恒定的电导,即在恒定的情况下,只能看到“开”或“关”两种状态,很少看到“半开”或“部分开”的情况;(3)即使是同一通道分子,每次开放的持续时间长短也不一致,似乎说明蛋白质分子可在开放和关闭两种构象之间“摆动”,停留在某种状态的长短具有随机的性质;(4)在化学门控通道结合了相应的化学信号分子,或电压门控通道所在膜两侧处于特定的电位差的情况下,“摆动”的次数增多,开放的机率增大,而“失活”使开放的机率减小。
膜内负电位必须去极化到某一临界值时,才能在整段膜引发一次动作电位,这个临界值大约比正常静息电位的绝对值小10~20mV,称为阈电位。例如,巨大神经轴突的静息电位为-70mV,它的阈电位约为-55mV。这不是由于小于阈电位的去极化不引起GNa的增加,实际情况是这时也有一定数目的Na+通道开放,但由于膜对K+的通透性仍大于Na+,因而少量的Na+内流及其对膜内电位的影响随即被K+的外流所抵消,因而去极化不能继续发展下去,不能形成动作电位。只有当外来刺激引起的去极化达到阈电位水平时,由于较多量Na+通道的开放造成了膜内电位较大的去极化,而此去极化已不再能被K+外流所抵消,因而能进一步加大膜中Na+通道开放的机率,结果又使更多Na+内流增加而造成膜内进一步的去极化,如此反复促进,就形成一种正反馈的过程,称为再生性循环,其结果使膜内去极化迅速发展,形成动作电位陡峭的升支,直至膜内电位上升到近于Na+平衡电位的水平。由此可见,阈电位不是单一通道的属性,而是在一段膜上能使Na+通道开放的数目足以引起上面描述的再生性循环出现的膜内去极化的临界水平。由此也不难理解,只要刺激大于能引起再生性循环的水平,膜内去极化速度就不再决定于原刺激的大小;整个动作电位上升支的幅度也只决定于原来静息电位的值和膜内外的Na+浓度差,而与引起此次动作电位的刺激大小无关。此即动作电位所以能表现“全或无”现象的机制。
一个阈下刺激会对可兴奋细胞产生何种影响?可通过图2-17中的实验回答。在巨大神经轴突放置一对刺激电极,但其中一个电极穿入膜内,再在附近放置一个作膜内电反应记录的记录电极。假定先把膜内的刺激电极连到电源正极,那么电路接通时将会产生去极化;如果这个去极化未能达到阈电位,则说明所用电刺激强度属于阈下刺激。但如前所述,阈下刺激虽未能膜电位达到阈电位的去极化,也能引起该段膜中所含Na+通道的少量开放,只是开放的机率少,于是少量内流的Na+和电刺激造成的去极化叠加起来,在受刺激的膜局部出现一个较小的膜的去极化反应,称为局部反应或局部兴奋,局部兴奋由于强度较弱,且很快被外流的K+所抵消,因而不能引起再生性循环而发展成真正的兴奋或动作电位。图2-17B就记录了一组这样的实验曲线,说明在阈下刺激的范围内,刺激强度愈强,引起的膜的去极化即局部兴奋的幅度愈大(由表示静息电位水平的线段上方的各条曲线表示),延续的时间也愈长;只有当局部兴奋的幅度大到足以引发再生性循环的水平时,膜的去极化的速度才突然加大,这样局部兴奋就发展成为动作电位。
局部兴奋有以下几个基本特性:(1)不是“全或无”的,而是随着阈下刺激的增大而增大;(2)不能在膜上作远距离的传播,虽然由于膜本身有电阻特性且膜内外都是电解质溶液,发生在膜的某一点的局部兴奋,可以使邻近的膜也产生类似的去极化,但随距离加大而迅速减小以至消失,这个局部兴奋所波及的范围在一般神经细胞膜上不超过数十乃至数百微米,但有的细胞本身也不很大,如神经元细胞体,局部兴奋的这种电紧张性扩布(eletrotonic propagation)还是有重要生理意义的;(3)局部兴奋是可以互相叠加的,也就是说,当一处产生的局部兴奋由于电紧张性扩布致使邻近处的膜也出现程度较小的去极化,而该处又因另一刺激也产生了局部兴奋,虽然两者(当然不一定限于两者)单独出现时都不足以引发一次动作电位,但如果遇到一起时可以叠加起来,以致有可能达到阈电位而引发一次动作电位。称为兴奋的空间性总和;局部兴奋的叠加也可以发生在连续受数个阈下刺激的膜的某一点,亦即当前面刺激引起的局部兴奋尚未消失时,与后面刺激引起的局部兴奋发生叠加,称为时间性总和。总和现象在神经元细胞的功能活动中十分重要和常见。另外,由图示2-17B中还可看到,当刺入膜内的刺激电极和电源负极相连时,通电时只能引起膜的超级化(图中水平线下方的那组曲线);刺激愈强,超极化程度愈大,但不引起Na+通道开放,更不能引发锋电位。事实上,这时由于膜内电位和阈电位之间差值加大,因而该处膜变得更不容易兴奋了。体内某些感受器细胞、部分腺细胞和平滑肌细胞,以及神经细胞体上的突触后膜和骨骼肌细胞的终板膜,它们在受刺激时不产生“全或无”形式的动作电位,而只出现原有静息电位的微弱而缓慢的变动,分别称为感受器电位、慢电位、突触后电位和终板电位。这些电位也具有类似局部兴奋的特性。这些形式的电变。